Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis.

نویسندگان

  • Evelyn Durmaz
  • Todd R Klaenhammer
چکیده

The conjugative plasmid pTR2030 has been used extensively to confer phage resistance in commercial Lactococcus starter cultures. The plasmid harbors a 16-kb region, flanked by insertion sequence (IS) elements, that encodes the restriction/modification system LlaI and carries an abortive infection gene, abiA. The AbiA system inhibits both prolate and small isometric phages by interfering with the early stages of phage DNA replication. However, abiA alone does not account for the full abortive activity reported for pTR2030. In this study, a 7.5-kb region positioned within the IS elements and downstream of abiA was sequenced to reveal seven additional open reading frames (ORFs). A single ORF, designated abiZ, was found to be responsible for a significant reduction in plaque size and an efficiency of plaquing (EOP) of 10(-6), without affecting phage adsorption. AbiZ causes phage phi31-infected Lactococcus lactis NCK203 to lyse 15 min early, reducing the burst size of phi31 100-fold. Thirteen of 14 phages of the P335 group were sensitive to AbiZ, through reduction in either plaque size, EOP, or both. The predicted AbiZ protein contains two predicted transmembrane helices but shows no significant DNA homologies. When the phage phi31 lysin and holin genes were cloned into the nisin-inducible shuttle vector pMSP3545, nisin induction of holin and lysin caused partial lysis of NCK203. In the presence of AbiZ, lysis occurred 30 min earlier. In holin-induced cells, membrane permeability as measured using propidium iodide was greater in the presence of AbiZ. These results suggest that AbiZ may interact cooperatively with holin to cause premature lysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lactococcal Plasmid pNP40 Encodes a Third Bacteriophage Resistance Mechanism, One Which Affects Phage DNA Penetration.

The lactococcal plasmid pNP40 mediates insensitivity to (phi)c2 by an early-acting phage resistance mechanism in addition to the previously identified abortive infection system, AbiF, in the Lactococcus lactis subsp. lactis MG1614 background. A second abortive infection determinant on pNP40, AbiE, does not confer resistance to (phi)c2. The early-acting mechanism on pNP40 does not prevent phage ...

متن کامل

Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages.

To survive in phage-containing environments, bacteria have evolved an array of antiphage systems. Similarly, phages have overcome these hurdles through various means. Here, we investigated how phages are able to circumvent the Lactococcus lactis AbiQ system, a type III toxin-antitoxin with antiviral activities. Lactococcal phage escape mutants were obtained in the laboratory, and their genomes ...

متن کامل

Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages.

In this study, we demonstrated the remarkable genome plasticity of lytic lactococcal phages that allows them to rapidly adapt to the dynamic dairy environment. The lytic double-stranded DNA phage ul36 was used to sequentially infect a wild-type strain of Lactococcus lactis and two isogenic derivatives with genes encoding two phage resistance mechanisms, AbiK and AbiT. Four phage mutants resista...

متن کامل

Effect of spermine on host-cell lysis and reproduction by a lactic streptococcal bacteriophage.

A method was tested for protecting a Streptococcus lactis strain, ML3, used as a starter in the manufacture of Cheddar cheese, against the lytic activity of its homologous phage, ml(3). At a concentration of 10(-2)m, a naturally occurring polyamine, spermine, in the form of its hydrochloride, protected ML3 against lysis-from-without and lysozyme activity and against lysis by the phage when adde...

متن کامل

Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance

Absence of the membrane protease FtsH in Lactococcus lactis hinders release of the bacteriophage TP712. In this work we have analyzed the mechanism responsible for the non-lytic phenotype of L. lactis ΔftsH after phage infection. The lytic cassette of TP712 contains a putative antiholin-pinholin system and a modular endolysin (LysTP712). Inducible expression of the holin gene demonstrated the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 4  شماره 

صفحات  -

تاریخ انتشار 2007